22 research outputs found

    Exosomes loaded with ultrasmall Pt nanoparticles: a novel low-toxicity alternative to cisplatin

    Get PDF
    Background: Platinum nanoparticles have been demonstrated to have excellent anticancer properties. However, because of the lack of specificity they must be delivered to the tumor in amounts sufficient to reach the desired therapeutic objectives. Interestingly, exosomes are considered as excellent natural selective delivery nanotools, but until know their targeting properties have not being combined with the anticancer properties of platinum nanoparticles. Results: In this work we combine the targeting capabilities of exosomes and the antitumoral properties of ultrasmall (< 2 nm) platinum nanoparticles as a novel, low toxicity alternative to the use of cisplatin. A mild methodology based on the room temperature CO-assisted in situ reduction of Pt2+ precursor was employed to preserve the integrity of exosomes, while generating ultrasmall therapeutic PtNPs directly inside the vesicles. The resulting PtNPs-loaded exosomes constitute a novel hybrid bioartificial system that was readily internalized by the target cells inducing antiproliferative response, as shown by flow cytometry and microscopy experiments in vitro. In vivo Pt-Exos showed antitumoral properties similar to that of cisplatin but with a strongly reduced or in some cases no toxic effect, highlighting the advantages of this approach and its potential for translation to the clinic. Conclusions: In this study, a nanoscale vector based on ultrasmall PtNPs and exosomes has been created exhibiting antitumoral properties comparable or higher to those of the FDA approved cisplatin. The preferential uptake of PtNPs mediated by exosomal transfer between certain cell types has been exploited to create a selective antitumoral novel bioartificial system. We have demonstrated their anticancer properties both in vitro and in vivo comparing the results obtained with the administration of equivalent amounts of cisplatin, and showing a spectacular reduction of toxicity. © 2022, The Author(s)

    Polymer functionalized gold nanoparticles as non-viral gene delivery reagents.

    Get PDF
    Background: In this study we investigated the ability of PEG functionalized gold nanoparticles as non-viral vectors in the transfection of different cell lines, comparing them with commercial lipoplexes. Methods: Positively charged gold nanoparticles were synthesized using PEI as reducing and stabilizer agent and its cytotoxicity reduced by its functionalization with PEG. We bound the nanoparticles to three plasmids with different sizes (4-40 kpb). The vector internalization was evaluated by confocal and electronic microscopy. Its transfection efficacy was studied by fluorescence microscopy and flow cytometry. The application of the resulting vector in gene therapy was indirectly evaluated using ganciclovir in HeLa cells transfected to express the herpes virus thymidine kinase. Results: An appropriate ratio between the nitrogen from the PEI and the phosphorous from the phosphate groups of the DNA together with a reduced size and an elevated electrokinetic potential are responsible for an increased nanoparticle internalization and enhanced protein expression when carrying plasmids of up to 40kbp (plasmid size close to the limit of the DNA carrying capacity of viral vectors). Compared to a commercial transfection reagent, an equal or even higher expression of reporter genes (on HeLa and HEK 293T) and suicide effect on HeLa cells transfected with the herpes virus thymidine kinase gene were observed when using this novel nanoparticulated vector. Conclusions: Non-viral vectors based on gold nanoparticles covalently coupled with polyethylene glycol (PEG) and Polyethylenimine (PEI) can be used as efficient transfection reagents showing expression levels same or greater than the ones obtained with commercially available lipoplexes.pre-print3905 K

    Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis

    Get PDF
    The transformational impact of bioorthogonal chemistries has inspired new strategies for the in vivo synthesis of bioactive agents through non-natural means. Among these, Pd catalysts have played a prominent role in the growing subfield of bioorthogonal catalysis by producing xenobiotics and uncaging biomolecules in living systems. However, delivering catalysts selectively to specific cell types still lags behind catalyst development. Here, we have developed a bioartificial device comprising cancer-derived exosomes that are loaded with Pd catalysts by a method that enables the controlled assembly of Pd nanosheets directly inside the vesicles. This hybrid system mediates Pd-triggered dealkylation reactions in vitro and inside cells, and displays preferential tropism for their progenitor cells. The use of Trojan exosomes to deliver abiotic catalysts into designated cancer cells creates the opportunity for a new targeted therapy modality; that is, exosome-directed catalyst prodrug therapy, whose first steps are presented herein with the cell-specific release of the anticancer drug panobinostat

    The effect of hollow gold nanoparticles on stem cell migration. Potencial application in tissue regeneration.

    Get PDF
    Every year trauma together with bone, joints and cartilage-associated diseases usually involve structural damage, resulting in a severe pain and disability for millions of people worldwide[1]. In regenerative medicine, cellular, tissue and organ-based approaches are developed to restore biological functions that have been lost[2],[3]. Therefore, tissue repair and regenerative medicine have attracted the interest of the scientific community, providing promising results in preclinical models and clinical pilot studies.pre-print3341 K

    Extracellular vesicles from induced neurons trigger epigenetic silencing of a brain neurotransmitter.

    Get PDF
    Introduction: Antithrombin (AT) is a glycoprotein involved in the regulation of blood coagulation. It belongs to the family of serine-protease inhibitors and acts as the most important antagonist of different clot- ting factors. Two types of inherited AT deficiency can be distinguished: Type I (quantitative deficit), and Type II (qualitative deficit). The latter is characterized by an impaired inhibitory activity related to dysfunc- tional domains of the protein. Three Type II subtypes can be defined: Type IIa (reactive site defect), Type IIb (heparin binding site defect) and Type IIc (pleiotropic defect). This classification has clinical importance since these subtypes have a different thrombotic risk. No functional routine diagnostic assay, however, can be assumed to detect all forms of Type II deficiencies since false-negative results may hamper the diagnosis. Methods: We analysed the biochemical/biophysical association of ATT to EVs. We separated EVs from plasma of healthy or Type II affected patients or from cultured hepatocytes through differential ultracentrifu- gation followed by sucrose density gradient and/or immunoprecipitation. We next combined dot blot ana- lysis, WB, 2D electrophoresis and enzymatic assays to reveal the nature of ATT association to EVs. Results: We evidenced that ATT is associated to the external leaflet of EVs. We also found that specific ATT isoforms are enriched in EV preparations in respect to total plasma and that those isoforms are selectively associated to EVs when comparing healthy or ATT type II deficient patients. Summary/Conclusion: ATT selective association pat- tern to EVs might be related either to mutations in the primary sequence of the protein or alterations in the glycosylation process, hence experiments are ongoing to reveal the nature of this phenomenon. Our findings suggest that analysis of ATT enriched in EV prepara- tions might be useful to gain insights into the patho- genesis and be of support in the diagnostic algorithm of ATT deficiency. Funding: This work acknowledges FFABR (Fondo finanziamento attività Base di ricerca from MIUR, Ministry of Education, Universities and Research, Italy) for financial support

    Selective delivery of photothermal nanoparticles to tumors using mesenchymal stem cells as Trojan horses

    Get PDF
    The main challenge of cancer treatment is to avoid or minimize systemic side effects in off-target tissues. Mesenchymal stem cells (MSCs) can be used as therapeutical carriers because of their ability to migrate and incorporate into inflammation areas including tumors. Here, this homing ability is exploited by carrying therapeutic nanoparticles (Hollow Gold Nanoparticles (HGNs)) following a “Trojan-horse” strategy. Amongst the different nanoparticles to be employed, HGNs have the capacity to resonate in the near infrared region when irradiated by an appropriated laser (808 nm). By transforming this absorbed energy into heat, they are capable to produce locally induced hyperthermia. At this wavelength healthy tissues have a minimal light absorption being the effect restricted to the tissues containing HGNs. By placing HGNs inside MSCs, the recognition, excretion and immune response are minimized. We demonstrate that MSCs internalize HGNs and reach the tumors still containing HGNs. After laser treatment this loaded cells are able to eradicate tumoral cells in vitro and in vivo without significant toxicity. Also Ki67 expression, which is usually correlated with proliferation, is reduced after treatment. This approach enhances the effectiveness of the treatment when compared to just the enhanced permeation and retention effect (EPR) of the HGNs by themselves

    Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids

    Get PDF
    Exosomes can be considered natural targeted delivery systems able to carry exogenous payloads, drugs or theranostic nanoparticles (NPs). This work aims to combine the therapeutic capabilities of hollow gold nanoparticles (HGNs) with the unique tumor targeting properties provided by exosomes. Here, we tested different methods to encapsulate HGNs (capable of absorbing light in the NIR region for selective thermal ablation) into murine melanoma cells derived exosomes (B16-F10-exos), including electroporation, passive loading by diffusion, thermal shock, sonication and saponin-assisted loading. These methods gave less than satisfactory results: although internalization of relatively large NPs into B16-F10-exos was achieved by almost all the physicochemical methods tested, only about 15% of the exosomes were loaded with NPs and several of those processes had a negative effect regarding the morphology and integrity of the loaded exosomes. In a different approach, B16-F10 cells were pre-incubated with PEGylated HGNs (PEG-HGNs) in an attempt to incorporate the NPs into the exosomal biogenesis pathway. The results were highly successful: exosomes recovered from the supernatant of the cell culture showed up to 50% of HGNs internalization. The obtained hybrid HGN-exosome vectors were characterized with a battery of techniques to make sure that internalization of HGNs did not affect exosome characteristics compared with other strategies. PEG-HGNs were released through the endosomal-exosome biogenesis pathway confirming that the isolated vesicles were exosomes

    Superfluorinated extracellular vesicles for in vivo imaging by 19f-mri

    Get PDF
    Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication and have great potential as efficient delivery vectors. However, a better understanding of EV in vivo behavior is hampered by the limitations of current imaging tools. In addition, chemical labels present the risk of altering the EV membrane features and, thus, in vivo behavior. 19F-MRI is a safe bioimaging technique providing selective images of exogenous probes. Here, we present the first example of fluorinated EVs containing PERFECTA, a branched molecule with 36 magnetically equivalent 19F atoms. A PERFECTA emulsion is given to the cells, and PERFECTA-containing EVs are naturally produced. PERFECTA-EVs maintain the physicochemical features, morphology, and biological fingerprint as native EVs but exhibit an intense 19F-NMR signal and excellent 19F relaxation times. In vivo 19F-MRI and tumor-targeting capabilities of stem cell-derived PERFECTA-EVs are also proved. We propose PERFECTA-EVs as promising biohybrids for imaging biodistribution and delivery of EVs throughout the body

    Use of exosomes as vectors to carry advanced therapies

    No full text
    Exosomes are microvesicles of nanometric size involved in the communication between cells and tissues. Inside their bilipidic membrane they carry nucleic acids such as cargos (DNA, miRNA, etc.). Some of the advantages that make exosomes very attractive therapeutic vehicles are (i) their tropism through different tissues, (ii) the ability to pass biological barriers and (iii) the protection of the encapsulated material from the immune system and degradation. Viruses are some of the most widely employed gene therapy vehicles; however, they are still facing many problems, such as inefficient tropism to damaged areas and their elimination by the immune system. One of the functions attributed to exosomes is the elimination of substances that could be harmful to the cell, including viruses. Recently it has been investigated whether complete viruses or part of them could be encapsulated in exosomes, for a new viral-exosome gene therapy approach. Moreover, nanotechnology is another type of advanced therapy (together with gene and cell therapies) that can be used, among other utilities, to transfer genetic material. Recently the field of encapsulation of nanomaterials in exosomes, with or without gene transfer, is increasing. In this review we will summarize all of those studies. This journal i
    corecore